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LETTER TO THE EDITOR 
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Abstract. We study scalar field theories for which the interaction term of the Hamiltonian is 
cubic in the fields. We indicate the circumstances for which field theory models of this type 
represent continuous phase transitions. The renormalisation group functions for these 
models are presented up to, and including, three-loop contributions, giving critical 
exponents to order e3 in 6 - r  dimensions. The exponent cr which characterises the 
Yang-Lee edge singularity is given explicitly to this order. 

The field theoretical approach to the study of critical phenomena has been extremely 
successful in giving a unified picture of continuous phase transitions, as well as 
predicting physical quantities in the critical region (see for 'instance Amit 1978). In 
particular, the idea that for a given system there exists a critical dimension, d,, above 
which mean field theory is exact, led to the €-expansion of Wilson and Fisher (1972). In 
this scheme thecorrections to mean field theory for dimensionality d < d, are calculated 
perturbatively in E = d, - d. The application of this method to the field theory with 
quartic interaction (4')', 9 = (q51,q52, . . . , 4") has led to an expansion in E = 4-d to 
fourth order for the critical exponents of the Ising and Heisenberg systems (Kazakov et 
ul 1979). If these series are resummed taking into account the high-order behaviour of 
the theory then, for d = 3 ,  they are found to be in impressive agreement with 
experimental and high-temperature series results. For these systems cubic interactions 
are forbidden by symmetry requirements; however, in general such interactions may be 
present. Furthermore, naive dimensional analysis shows us that near six dimensions 
(the critical dimension for cubic interactions) the cubic interaction dominates those of 
higher orders (Amit et ul 1977). Thus for cubic interactions we can calculate critical 
exponents as expansions in E = 6 - d. The results to second order were evaluated by 
Amit (1976) and Priest and Lubensky (1976); however these results give insufficient 
information for reliable numerical results to be obtained. In an attempt to remedy this 
situation we have calculated the third-order contributions. 

We consider models which have the Hamiltonian 
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where i, j ,  k = 1, . . . , n, repeated indices are summed and dllk is an invariant third-rank 
symmetric tensor of some symmetry group. The critical exponents are calculated from 
the renormalisation group functions at the fixed point of the theory. The exponents are 
related to the anomalous dimensions of q5 and q5’(y4(g) and y&g) respectively) by the 
relations 

77 = r4(g*), (2) 

(3) -1 
y - 2 + 77 = Y42k*), 

where g* is the fixed point of the theory (Amit 1978). The other exponents are given by 
scaling laws. 

Hamiltonians with a cubic interaction are used to model many phase transitions. 
Examples are the isotropic to nematic phase transition in liquid crystals (de Gennes 
1969, Priest and Lubensky 1976), any system described by the Potts model (Potts 1952, 
Zia and Wallace 1975, Priest and Lubensky 1976), in particular the percolation 
problem (Harris et al 1975, Amit 1976, Priest and Lubensky 1976) which is the n + 0 
limit of the ( n  + 1)  state Potts model (Fortuin and Kasteleyn 1972), the Yang-Lee edge 
singularity (Fisher 1978), the Edwards-Anderson model of a spin glass (Edwards and 
Anderson 1975, Harris et a1 1976), as well as quantum field theory models in particle 
physics (McKane et a1 1976, Wallace 1979). 

We wish to divide these models into two classes: those with real Hamiltonians and in 
which no ‘unphysical’ limits are taken and those where an ‘unphysical’ limit is taken. In 
the second class we place the percolation problem and the Edwards-Anderson model 
(in which the limit n + 0 is taken) and Fisher’s formulation of the Yang-Lee edge 
singularity (in which the coupling constant is pure imaginary). 

Two important remarks should be made. Firstly, field theories in the first class have 
instanton solutions (McKane 1979), indicating the ground state instability of such 
models, from which it follows that the €-expansion is not well defined: not only does it 
diverge but it has non-oscillatory behaviour at large orders in E .  This is not true of the 
percolation problem (Houghton et a1 1978) nor of the Yang-Lee edge problem 
(Kirkham and Wallace 1979). Secondly, although by naive dimensional analysis 
quartic and higher interactions are irrelevant in the critical region, this situation may 
change after renormalisation and the irrelevance of these operators should be checked 
a posteriori (Amit 1978). For many of the theories in the first class, it is found (Wallace 
1979) that even if a fixed point exists it becomes unstable to q54 operators as d is lowered 
from six, whereas q54 operators are irrelevant in cases of interest in the second class 
(Amit et a1 1977, Elderfield and McKane 1978, Kirkham and Wallace 1979). Below, 
we give our results for the renormalisation group functions and critical exponents 
starting from the general Hamiltonian (l), although the above discussion makes it clear 
that we will be largely interested in models falling into the second class. 

The different models are specified in (1) solely by the tensor dllk. The Feynman 
diagrams to be evaluated are those of a one-component q53 theory, but multiplied by the 
appropriate tensorial contraction. In the one-loop calculation only two types of 
contraction are found, defining two constants cy and p by 

dlkidJki = a&, drimdlmndknl = pdrlk* (4) 

These correspond to the diagrams in figure l ( a )  and figure l (b)  respectively, with the 
tensors situated at each vertex, repeated indices being represented by internal lines and 
free indices by external lines. At two and three loops, three more constants are 
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Figure 1. The five independent types of tensor contractions at three loops. 

encountered: y, S and A given diagrammatically in figures l(c), l ( d )  and l ( e )  respec- 
tively. The greatest amount of labour involved in the calculations of the renor- 
malisation group functions is in the evaluation of the Feynman graph integrals. This will 
be discussed elsewhere: here we simply give our results. They are 

p (g )  = - tEg + ($3 - p)g3 + ( - $a + gap - $p2 - 3y)gS 
3-1013 2 

+ [20736a  3456ff p + ~ a p 2 + ~ p 3 + a y ( ~ - - [ ( 3 ) )  

+ P r ( k ( 3 )  -2) - 8 + A  (1 - 35(3))ls7 + O(gg), (5)  
y+(g) =%ag2+(&Yp - -&a2)g4+[&a3-ma 179 2 p +&ap2 

+ . r ( & - i m > 1 g 6  + 0(g8>,  (6)  

+ap2(%+g(3))+bcrylg6+ 0(g8>,  (7) 

yb2(g) = ag2+(ap -ka2)g4+[216a _ 9 5 3  + a 2 ~ ( - E - $ 3 3 ) )  

00 where E = 6 - 4  5 (3 )  l / n 3  = 1.202. , . and where, as usual, a factor of & / ( 2 ~ ) ~  
(Sd is the surface area of a unit sphere in d dimensions) has been absorbed into g2. The 
two-loop results agree with those appearing in the literature, in the cases where the 
same renormalisation scheme was used (MacFarlane and Woo 1974, Amit 1976). From 
equation ( 5 )  we find that the non-trivial fixed point is given by 

2E E 2  

E 3  

(E a2  - 22 ap + 12p2 + 8 ~ )  
3 

1127 1415 

g"2 = + 
( a - 4 P )  ( a - 4 p ) 3  9 

(2 a4 - - Q p + - a 2p2 - 1048 ap3 + 2 16p4 + 
( ( ~ - 4 p ) '  216 324 54 9 

+p2r( - 3 + 3 2 0 [ ( 3 ) )  5 60 +apy(--96[(3)) 104 
3 

+32S(a -4p)+32A(a -4p) (3 [ (3 ) -1 ) - i -64r2)  +O(e4) (8) 
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which, using equations (2), (3), (6) and (7), gives 

v =  + a€ 

637 292 736 11 
486 27 27 27 

a3p+--a p ----ap3+-p4+-a2y 
7 3 

+ 
+ spy( - 3 g 3 )  + 9) + p 2 y (  -?+?[(3)) + y y 2  

+yS(a  -4P)+yA(a  -4p)(3[(3)-1)) +O(e4) (9) 

and 
2 2ae 

3 
+ -1 Y -2+q=- 

ae3 85 2534 812 + (a -4p)5 [ 24 - a4 - a3p( -+4[(3)) 81  + a2p2(  -+ 9 40[(3)) 

  CY^ 3 (T+ 1216 1285(3) )+p4(y+ 1285(3))+a2y(y+4[(3)) 

+a/3y(l6-96f(3))+P2y(32O[(3)-y)+64y2 

+ 3 2 ~ ( ~  - 4 p ) + 3 2 ~ ( ~  -4p)(35(3)- 1 )1+0(~~) .  (10) 

These agree with the 0 ( c 2 )  results of Priest and Lubensky (1975) and Amitt (1976) and 
with the O(e3) evaluation of q in the special case of a symmetry for which p = y = A = 0 
(McKane 1977). 

The simplest case of interest is the one where n = 1 and g is pure imaginary, this 
being the model considered by Fisher (1978) in his study of Yang-Lee edge singulari- 
ties. This effectively means dill = i, leading to a = p = S = A = -1 and y = 1. The 
exponent which characterises the singularities is 

(T = (d - 2 + q ) / ( d  + 2 - q) 

+ (&5(3)-i-)e3 + O(e4). (11) 
1 1  = T - E €  -- 

The one-component theory provides a further check on our results since in this case 
the anomalous dimension y+z(g) is linearly related to y+(g) and p(g).  (This is proved 
using the equation of motion of the theory (Amit 1978).) A consequence of this is that 
the exponent p = $Y (d  - 2 + 77) is exactly equal to its mean field value of 1. 

In order to obtain a realistic value for U when E = 3, the series (1 1) needs to be 
analysed using resummation techniques. This, together with a more detailed descrip- 
tion of the calculation and other applications, will be discussed elsewhere. 
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t There is a misprint in equation (6.23) of Amit’s paper; the coefficient of ( ~ $ 1  should be -4, not +f. 
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